+++ PQ-Box Trade-in Promotion: Only From 01.09. – 31.12.2024 +++ Attractive Discount on Your PQ-Box Order +++ Click Here for More Information! +++

+++ PQ-Box Trade-in Promotion: Only From 01.09. – 31.12.2024 +++ Attractive Discount on Your PQ-Box Order +++ Click Here for More Information! +++

+++ PQ-Box Trade-in Promotion: Only From 01.09. – 31.12.2024 +++ Attractive Discount on Your PQ-Box Order +++ Click Here for More Information! +++

Simultaneous Charging of Electric Vehicles

Effects on the Network

The Challenge

At the Bingen University of Applied Sciences (THB), electric vehicles were charged in parallel at ten charging points. Among other things, it was of interest to measure charging currents and their impact on the THB grid, to determine cycle frequencies and their distribution in the grid and to evaluate grid asymmetries. The evaluation showed that standard violations occurred to a small extent (i.e. the power quality has improved in recent years), that the voltage quality must be scrutinised more closely in future and that the charging electronics should be improved. The study ‘Power Quality in Electromobility’ from 2013 found that around a quarter of all electric vehicles measured in this project generated unacceptable harmonic currents during charging [1].

Introduction

Today, charging technology in e-vehicles has markedly improved. Limits are much more regularly maintained. However, the most frequently infringed condition of connection is asymmetry in the single-phase charging of electric vehicles. In some cases, single-phase charging power up to 7 kW is reached here. In serially produced e-vehicles, almost no infringements arise, except when the charging electrics are defective. The greatest harmonic currents arise from converted e-vehicles. These happen when simple rectified circuits consisting of diodes with capacitive or inductive smoothing are used in a DC circuit. In an assessment to the VDN Technical rules, all relevant harmonic generators in a facility are collated with regard to the emissions to be expected at the shared network connection point. Here, the individual harmonic currents and the combined effect of all harmonics are considered through the distortion factor of the basic oscillation THD. To measure the voltage and current during the charging process, power quality analyzers and fault recorders made by A. Eberle, Nuremberg, are used. The sampling frequency of the PQ-Box 200 is 40.96 kHz, meaning DC frequencies up to 20 kHz can be recorded.

Conclusion

Some e-vehicles are charged on a single phase with a power much greater than 4.6 kVA – during the measurement campaign, up to 7.2 kVA was detected. The vehicles produce very differentiated switching frequencies. However, all the vehicles work as interference sinks, “extracting” this supraharmonic from the network. When switched on, all the vehicles generate a clear voltage transient. This could disturb other consumers. While the current harmonics of various e-mobility manufacturers do add up on the network, but not as strongly as a linear addition. No serial manufacturers infringe on the current harmonic limits up to the 50th harmonic.

Want More Information About Our Products?

Contact us here!


Contact

News From the Product Group

PQMobil - News

Blogpost

International Partner Week 2024 – A look back

Our International Partner Week 2024 - many old friends and new faces were our guests, it was a pleasure.

Read more

Training Video

»PQMobil« Training Video 5: Trigger and Fault Record Settings

Discover the best trigger settings for your »PQ-Box« to accurately record network disturbances. The video shows how to configure the half-cycle, oscilloscope, and transient recorders to reliably capture essential measurement data.

Read more

Blogpost

PQ-Box Trade-In Promotion: only from 1 September to 31 December 2024

For a limited time: Receive a discount for the trade-in of your PQ-Box 100 or a comparable external old device (3-phase power quality analyser). Click here for further information!

Read more

General Knowledge

Voltage Monitoring

Find out everything you need to know about voltage monitoring in this article. What is voltage monitoring, why is voltage monitoring essential for both energy supply companies and industrial companies and how is it implemented in compliance with standards?

Read more

General Knowledge

What Is Load Profile Measurement/Power Measurement?

This article explains the definition and difference between load profile measurement (RLM), power measurement and measuring the standard load profile. These are important methods for accurately recording energy consumption in commercial, large industrial plant as well as in the public energy grid.

Read more

Training Video

»PQMobil« Training Video 4: Create and Configure PQ Reports With Software WinPQ mobil

This video explains everything about creating and configuring power quality reports with »WinPQ mobil«.

Read more

Webinar

»PQMobil« Webinar: Grid Analysis in Public & Industrial Power Grids with A. Eberle PQ-Boxes

Webinar recording from 2024-02-22: »PQMobil - Grid Analysis in Public & Industrial Power Grids with A. Eberle PQ-Boxes«.

Read more

Training Video

»PQMobil« Training Video 3: Usability & Functions of the PQ-Box App

This video gives you an introduction to the usability and functions of the »PQ-Box App« for our portable power quality analysers.

Read more

Training Video

»PQMobil« Training Video 2: Menu Navigation and Operation of the PQ-Box

In this short introductory video, we present to you how to navigate and operate our portable power quality analysers »PQ-Box 150«, »PQ-Box 200« & »PQ-Box 300« of the PQ-Box family.

Read more

Training Video

»PQMobil« Training Video 1: Getting Started with the PQ-Box

This video shows in detail how to connect the »PQ-Box« and record measurements. The »WinPQ mobil« software is then used to visualize and analyse the measurement data and create a report.

Read more

Special Publication

Ferrari´s Meter vs. Electronic Meter

This technical report analyzes a power measurement at a large industrial customer. The customer records very high currents and fifth harmonic voltages during production time, which leads to poor voltage quality.

Read more

General Knowledge

Residual current

In this article, you will learn about residual current measurement & residual current monitoring and why it is important to measure residual current.

Read more

General Knowledge

Power Quality

Good power quality is characterized by the fact that the mains voltage actually arriving at the consumer matches the mains voltage promised by the utility company.

Read more

General Knowledge

Reactive power – definition, calculation and measurement

The key role of reactive power in electrical engineering: definition, calculation, measurement and the differences to active power and apparent power. Find out how reactive power influences the efficiency of electricity grids and shapes energy transmission.

Read more

General Knowledge

What is apparent power and how is it calculated?

This article addresses the question of what apparent power is and how to calculate it. An understanding of apparent power is crucial for the correct dimensioning of inverters and therefore for the optimum efficiency and performance of photovoltaic systems.

Read more

Special Publication

Angle determination of voltage and current harmonics in practice

Today's devices and equipment such as switched-mode power supplies, frequency converters, regulated drives, charging devices for e-mobiles or LED lighting work internally with high clock frequencies in order to regulate power efficiently. These can lead to both conducted and field-bound (coupled) influences in the energy grid. In this technical report, we explain how you can detect these sources of interference in the grid using suitable measuring technology.

Read more

General Knowledge

All „Supra“ with your grid?

Today's devices and equipment such as switched-mode power supplies, frequency converters, controlled drives, charging devices for e-mobiles or LED lighting work internally with high clock frequencies in order to regulate power efficiently. These can lead to line-borne as well as field-borne (coupled) interference in the power grid. In this technical report, we explain how you can detect these sources of interference in the grid using suitable measurement technology.

Read more

General Knowledge

Power Quality Analysis: Tips and Tricks II

Useful tips & tricks for handling Power Quality measuring devices and typical user errors - now in our two-part article! This article provides further insights and practical tips and application examples for power quality analysis.

Read more

General Knowledge

Power Quality Analysis: Tips and Tricks I

Useful tips & tricks for handling Power Quality measuring devices and typical user errors - now in our two-part article! This article explains tips and tricks for performing power quality measurements. It explains which connection errors can be made and which preliminary considerations should be made before using a measuring device.

Read more

General Knowledge

Four ways to measure current

The following technical report examines various methods for measuring current. It discusses how currents are measured using power analyzers and current clamps. The respective advantages and disadvantages of different technologies such as shunts, normal current clamps, hall effect sensors, etc. ar also evaluated.

Read more

General Knowledge

Cos ϕ vs. power factor λ – Practice

This second technical report on the subject of reactive power and in particular the distortion reactive power supplements the first contribution "Cos ϕ vs. power factor λ – Theory". In this article, the voltage and current of an incandescent lamp are measured in an online measurement using a power analyzer.

Read more

General Knowledge

Cos ϕ vs. power factor λ – Theory

This technical report discusses the distinction between power factor and cosine phi. Cosine Phi, formerly widely known as the ratio of active power to apparent power, however, has a different meaning for many consumers today.

Read more

Special Publication

Mains feedback interferes with protective devices

In a photography and design studio, located in a large industrial park, a RCD tripped frequently. Due to the permanent power cuts, the employees of the studio could not work properly. This article shows how we found a solution for this problem using our Power Quality devices.

Read more

Special Publication

Creating Power Quality surveys with PQ-Box and WinPQ mobil software

The following report displays the PQ-Box and WinPQ mobil software interact to allow an evaluation of the disturbance levels at a measuring point according to approved grid norms.

Read more

Special Publication

Measurement of voltage distortions in industrial grids with the PQ-Box 50

It is important to find disturbances in the system in a fast and reliable way. This report shows an example for trouble shooting with the Power Quality analyzer PQ-Box 50.

Read more

Contact request:



* Mandatory

Your data is being processed

a-eberle kontakt newsletter ×

Our seminars &
webinars

► Register here!

x